Rutgers University: Algebra Written Qualifying Exam

 August 2017: Problem 5 SolutionExercise. Let $G L(n, F)$ denote the group of $n \times n$ invertible matrices with entries in the field F. Prove that $g_{1}, g_{2} \in G L(n, \mathbb{Q})$ are conjugate in $G L(n, \mathbb{Q})$ if and only if they are conjugate in $G L(n, \mathbb{R})$.

Solution.

Two matrices g_{1} and g_{2} are conjugate IFF they are similar.
i.e. \exists a matrix P s.t. $\overline{g_{1}=P g_{2} P^{-1}}$.
(\Longrightarrow) is obvious.
If $g_{1}, g_{2} \in G L(n, \mathbb{Q})$ are conjugate in $G L(n, \mathbb{Q})$, then $\exists P \in G L(n, \mathbb{Q}) \subset G L(n, \mathbb{R})$ s.t.

$$
g_{1}=P g_{2} P^{-1}
$$

Since $P \in G L(n, \mathbb{R}), g_{1}$ and g_{2} are conjugate in $G L(n, \mathbb{R})$.
(\Longleftarrow) Suppose g_{1} and g_{2} are conjugate in $G L(n, \mathbb{R})$.
Then they are similar in $G L(n, \mathbb{R})$ and
two matrices are similar IFF they have the same rational canonical form.
$\Longrightarrow \mathrm{g}_{1}$ and g_{2} have the same rational canonical form over $G L(n, \mathbb{R})$.
$\Longrightarrow \mathrm{g}_{1}$ and g_{2} have the same rational canonical form in $G L(n, \mathbb{Q}) \subset G L(n, \mathbb{R})$.
$\Longrightarrow \mathrm{g}_{1}$ and g_{2} are conjugate in $G L(n, \mathbb{Q})$.
*See Dummit and Foote p. 472-479 (in particular 477)

