Rutgers University: Algebra Written Qualifying Exam August 2017: Problem 5 Solution

Exercise. Let GL(n, F) denote the group of $n \times n$ invertible matrices with entries in the field F. Prove that $g_1, g_2 \in GL(n, \mathbb{Q})$ are conjugate in $GL(n, \mathbb{Q})$ if and only if they are conjugate in $GL(n, \mathbb{R})$.

Solution. Two matrices g_1 and g_2 are conjugate IFF they are similar. i.e. $\exists a \text{ matrix } P \text{ s.t. } g_1 = Pg_2P^{-1}$.
(\Longrightarrow) is obvious. If $g_1, g_2 \in GL(n, \mathbb{Q})$ are conjugate in $GL(n, \mathbb{Q})$, then $\exists P \in GL(n, \mathbb{Q}) \subset GL(n, \mathbb{R})$ s.t.
$g_1 = Pg_2P^{-1}$
Since $P \in GL(n, \mathbb{R})$, g_1 and g_2 are conjugate in $GL(n, \mathbb{R})$.
 (⇐) Suppose g₁ and g₂ are conjugate in GL(n, R). Then they are similar in GL(n, R) and two matrices are similar IFF they have the same rational canonical form. ⇒ g₁ and g₂ have the same rational canonical form over GL(n, R). ⇒ g₁ and g₂ have the same rational canonical form in GL(n, Q) ⊂ GL(n, R). ⇒ g₁ and g₂ are conjugate in GL(n, Q).
*See Dummit and Foote p. 472-479 (in particular 477)